3.992 \(\int x^3 \sqrt [4]{a+b x^4} \, dx\)

Optimal. Leaf size=18 \[ \frac{\left (a+b x^4\right )^{5/4}}{5 b} \]

[Out]

(a + b*x^4)^(5/4)/(5*b)

________________________________________________________________________________________

Rubi [A]  time = 0.0038969, antiderivative size = 18, normalized size of antiderivative = 1., number of steps used = 1, number of rules used = 1, integrand size = 15, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.067, Rules used = {261} \[ \frac{\left (a+b x^4\right )^{5/4}}{5 b} \]

Antiderivative was successfully verified.

[In]

Int[x^3*(a + b*x^4)^(1/4),x]

[Out]

(a + b*x^4)^(5/4)/(5*b)

Rule 261

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(a + b*x^n)^(p + 1)/(b*n*(p + 1)), x] /; FreeQ
[{a, b, m, n, p}, x] && EqQ[m, n - 1] && NeQ[p, -1]

Rubi steps

\begin{align*} \int x^3 \sqrt [4]{a+b x^4} \, dx &=\frac{\left (a+b x^4\right )^{5/4}}{5 b}\\ \end{align*}

Mathematica [A]  time = 0.0031529, size = 18, normalized size = 1. \[ \frac{\left (a+b x^4\right )^{5/4}}{5 b} \]

Antiderivative was successfully verified.

[In]

Integrate[x^3*(a + b*x^4)^(1/4),x]

[Out]

(a + b*x^4)^(5/4)/(5*b)

________________________________________________________________________________________

Maple [A]  time = 0.004, size = 15, normalized size = 0.8 \begin{align*}{\frac{1}{5\,b} \left ( b{x}^{4}+a \right ) ^{{\frac{5}{4}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^3*(b*x^4+a)^(1/4),x)

[Out]

1/5*(b*x^4+a)^(5/4)/b

________________________________________________________________________________________

Maxima [A]  time = 0.955124, size = 19, normalized size = 1.06 \begin{align*} \frac{{\left (b x^{4} + a\right )}^{\frac{5}{4}}}{5 \, b} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3*(b*x^4+a)^(1/4),x, algorithm="maxima")

[Out]

1/5*(b*x^4 + a)^(5/4)/b

________________________________________________________________________________________

Fricas [A]  time = 1.42235, size = 34, normalized size = 1.89 \begin{align*} \frac{{\left (b x^{4} + a\right )}^{\frac{5}{4}}}{5 \, b} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3*(b*x^4+a)^(1/4),x, algorithm="fricas")

[Out]

1/5*(b*x^4 + a)^(5/4)/b

________________________________________________________________________________________

Sympy [A]  time = 0.641596, size = 39, normalized size = 2.17 \begin{align*} \begin{cases} \frac{a \sqrt [4]{a + b x^{4}}}{5 b} + \frac{x^{4} \sqrt [4]{a + b x^{4}}}{5} & \text{for}\: b \neq 0 \\\frac{\sqrt [4]{a} x^{4}}{4} & \text{otherwise} \end{cases} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**3*(b*x**4+a)**(1/4),x)

[Out]

Piecewise((a*(a + b*x**4)**(1/4)/(5*b) + x**4*(a + b*x**4)**(1/4)/5, Ne(b, 0)), (a**(1/4)*x**4/4, True))

________________________________________________________________________________________

Giac [A]  time = 1.15703, size = 19, normalized size = 1.06 \begin{align*} \frac{{\left (b x^{4} + a\right )}^{\frac{5}{4}}}{5 \, b} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3*(b*x^4+a)^(1/4),x, algorithm="giac")

[Out]

1/5*(b*x^4 + a)^(5/4)/b